4 research outputs found

    Reverse genetics systems as tools to overcome the genetic diversity of Lassa virus

    Get PDF
    Lassa virus is endemic in a large area of sub-Saharan Africa, and exhibits a large amount of genetic diversity. Of the four currently recognized lineages, lineages I–III circulate in Nigeria, and lineage IV circulates in Sierra Leone, Guinea, and Liberia. However, several newly detected lineages have been proposed. LASV genetic diversity may result in differences in pathogenicity or response to medical countermeasures, necessitating the testing of multiple lineages during the development of countermeasures and diagnostics. Logistical and biosafety concerns can make it difficult to obtain representative collections of divergent LASV clades for comparison studies. For example, lack of a cold chain in remote areas, or shipping restrictions on live viruses can prevent the dissemination of natural virus isolates to researchers. Reverse genetics systems that have been developed for LASV can facilitate acquisition of hard-to-obtain LASV strains and enable comprehensive development of medical countermeasures

    Genomic Surveillance of Rabies Virus in Georgian Canines

    No full text
    Rabies is a fatal zoonosis that is considered a re-emerging infectious disease. Although rabies remains endemic in canines throughout much of the world, vaccination programs have essentially eliminated dog rabies in the Americas and much of Europe. However, despite the goal of eliminating dog rabies in the European Union by 2020, sporadic cases of dog rabies still occur in Eastern Europe, including Georgia. To assess the genetic diversity of the strains recently circulating in Georgia, we sequenced seventy-eight RABV-positive samples from the brain tissues of rabid dogs and jackals using Illumina short-read sequencing of total RNA shotgun libraries. Seventy-seven RABV genomes were successfully assembled and annotated, with seventy-four of them reaching the coding-complete status. Phylogenetic analyses of the nucleoprotein (N) and attachment glycoprotein (G) genes placed all the assembled genomes into the Cosmopolitan clade, consistent with the Georgian origin of the samples. An amino acid alignment of the G glycoprotein ectodomain identified twelve different sequences for this domain among the samples. Only one of the ectodomain groups contained a residue change in an antigenic site, an R264H change in the G5 antigenic site. Three isolates were cultured, and these were found to be efficiently neutralized by the human monoclonal antibody A6. Overall, our data show that recently circulating RABV isolates from Georgian canines are predominantly closely related phylogroup I viruses of the Cosmopolitan clade. Current human rabies vaccines should offer protection against infection by Georgian canine RABVs. The genomes have been deposited in GenBank (accessions: OQ603609-OQ603685)
    corecore